Package: LSE 1.0.0

LSE: Constrained Least Squares and Generalized QR Factorization

The solution of equality constrained least squares problem (LSE) is given through four analytics methods (Generalized QR Factorization, Lagrange Multipliers, Direct Elimination and Null Space method). We expose the orthogonal decomposition called Generalized QR Factorization (GQR) and also RQ factorization. Finally some codes for the solution of LSE applied in quaternions.

Authors:Sergio Andrés Cabrera Miranda <https://orcid.org/0000-0002-8126-8521>, Juan Gabriel Triana Laverde <https://orcid.org/0000-0003-2991-6082>

LSE_1.0.0.tar.gz
LSE_1.0.0.zip(r-4.5)LSE_1.0.0.zip(r-4.4)LSE_1.0.0.zip(r-4.3)
LSE_1.0.0.tgz(r-4.4-any)LSE_1.0.0.tgz(r-4.3-any)
LSE_1.0.0.tar.gz(r-4.5-noble)LSE_1.0.0.tar.gz(r-4.4-noble)
LSE_1.0.0.tgz(r-4.4-emscripten)LSE_1.0.0.tgz(r-4.3-emscripten)
LSE.pdf |LSE.html
LSE/json (API)

# Install 'LSE' in R:
install.packages('LSE', repos = c('https://sergio05acm.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sergio05acm/lse/issues

On CRAN:

2.70 score 135 downloads 8 exports 2 dependencies

Last updated 3 years agofrom:25b5ca1507. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:AntiquaternionDir_EliminationGQRLagrangeLSE_GQRNullspaceQuaternionRQ

Dependencies:MASSpracma